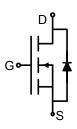


NCE N-Channel Enhancement Mode Power MOSFET

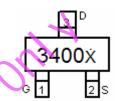
Description

The NCE3400 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features


• $V_{DS} = 30V, I_D = 5.8A$

 $R_{DS(ON)}$ < 57m Ω @ V_{GS} =2.5V


 $R_{DS(ON)}$ < 41m Ω @ V_{GS} =4.5V

 $R_{DS(ON)}$ < 35m Ω @ V_{GS} =10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package
- PWM applications
- Load switch
- Power management

Schematic diagram

Marking and pin assignment

SOT-23 top view

Package Marking and Ordering Information

Device Marking	Device	D	evice Package	Reel Size	Tape width	Quantity
3400 X	NCE3400		SOT-23	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

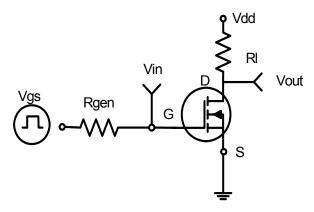
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _{GS}	±12	V
Drain Current-Continuous	I _D	5.8	Α
Drain Current-Pulsed (Note 1)	I _{DM}	30	Α
Maximum Power Dissipation	P _D	1.4	W
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}\!$

Thermal Characteristic

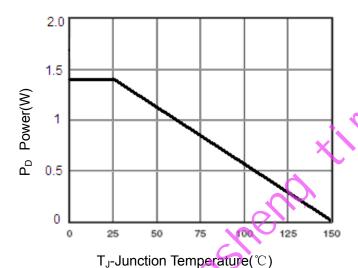
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	89	°C/W
, and the second		1	1

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	33	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ


I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	0.7	0.9	1.2	V
	V _{GS} =2.5V, I _D =4A	-	28	57	mΩ
R _{DS(ON)}	V _{GS} =4.5V, I _D =5A	-	24	41	mΩ
V _{GS} =10V, I _D =5A	-	22	35	mΩ	
g FS	V _{DS} =5V,I _D =5A	10	-	-	S
C _{lss}	\/ -15\/\/ -0\/	-	820	-	PF
Coss		-	99	-	PF
C _{rss}	F=1.0WHZ	1	77	-	PF
t _{d(on)}		-	3.3	-	nS
t _r	V_{DD} =15V, R_L =2.7 Ω	-	4.8	-	nS
$t_{\sf d(off)}$	V_{GS} =10 V_{RGEN} =3 Ω	-	26	-	nS
t _f	115	-	4	-	nS
Qg	\\ -15\\\\ -5A	-	9.5	-	nC
Q_{gs}		-	1.5	-	nC
Q_{gd}	VGS-4.5V	-	3	-	nC
V _{SD}	V _{GS} =0V,I _S =5A	-	-	1.2	>
I _S		-	-	5.8	Α
	$V_{GS(th)}$ $R_{DS(ON)}$ g_{FS} C_{Iss} C_{oss} C_{rss} $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} V_{SD}	$\begin{array}{ c c c c } \hline V_{GS(th)} & V_{DS} = V_{GS}, I_D = 250 \mu A \\ \hline V_{GS} = 2.5 V, \ I_D = 4 A \\ \hline V_{GS} = 4.5 V, \ I_D = 5 A \\ \hline V_{GS} = 10 V, \ I_D = 5 A \\ \hline V_{DS} = 5 V, I_D = 5 A \\ \hline \hline C_{ISS} & V_{DS} = 5 V, V_{GS} = 0 V, \\ \hline C_{COSS} & F = 1.0 MHz \\ \hline \hline t_{r} & V_{DD} = 15 V, R_L = 2.7 \Omega \\ \hline t_{d(off)} & V_{GS} = 10 V, R_{GEN} = 3 \Omega \\ \hline t_{f} & Q_g & V_{DS} = 15 V, I_D = 5 A, \\ \hline Q_{gS} & V_{DS} = 4.5 V \\ \hline \hline V_{SD} & V_{GS} = 0 V, I_S = 5 A \\ \hline I_{S} & V_{GS} = 0 V, I_S = 5 A \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c } \hline V_{GS(th)} & V_{DS}=V_{GS}, I_D=250 \mu A & 0.7 & 0.9 \\ \hline V_{GS}=2.5 V, I_D=4 A & - & 28 \\ \hline V_{GS}=4.5 V, I_D=5 A & - & 24 \\ \hline V_{GS}=10 V, I_D=5 A & - & 22 \\ \hline Q_{FS} & V_{DS}=5 V, I_D=5 A & 10 & - \\ \hline \hline C_{ISS} & V_{DS}=5 V, V_{GS}=0 V, & - & 99 \\ \hline C_{rss} & F=1.0 MHz & - & 4.8 \\ \hline t_{d(on)} & V_{GS}=15 V, V_{GS}=0 V, & - & 4.8 \\ \hline t_{d(off)} & V_{GS}=10 V, R_{GEN}=3 \Omega & - & 26 \\ \hline t_{f} & - & 4 \\ \hline Q_{g} & V_{DS}=15 V, I_D=5 A, & - & 9.5 \\ \hline Q_{gd} & V_{GS}=4.5 V & - & 3 \\ \hline \end{array}$	$\begin{array}{ c c c c c c } \hline V_{GS(th)} & V_{DS}{=}V_{GS},I_{D}{=}250\mu A & 0.7 & 0.9 & 1.2 \\ \hline V_{GS}{=}2.5V,\ I_{D}{=}4A & - & 28 & 57 \\ \hline V_{GS}{=}4.5V,\ I_{D}{=}5A & - & 24 & 41 \\ \hline V_{GS}{=}10V,\ I_{D}{=}5A & - & 22 & 35 \\ \hline g_{FS} & V_{DS}{=}5V,I_{D}{=}5A & 10 & - & - \\ \hline \hline C_{ISS} & V_{DS}{=}5V,V_{GS}{=}0V, \\ \hline C_{CSS} & F{=}1.0MHz & - & 820 & - \\ \hline C_{TSS} & - & 99 & - & - \\ \hline t_{I} & V_{DD}{=}15V,\ R_{L}{=}2.7\Omega & - & 4.8 & - \\ \hline t_{I} & V_{DS}{=}15V,I_{D}{=}5A, \\ \hline V_{GS}{=}4.5V & - & 9.5 & - \\ \hline Q_{g} & V_{DS}{=}15V,I_{D}{=}5A, \\ \hline V_{GS}{=}4.5V & - & 3 & - \\ \hline V_{SD} & V_{GS}{=}0V,I_{S}{=}5A & - & - & 1.2 \\ \hline I_{S} & - & - & 5.8 \\ \hline \end{array}$

Notes:


- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

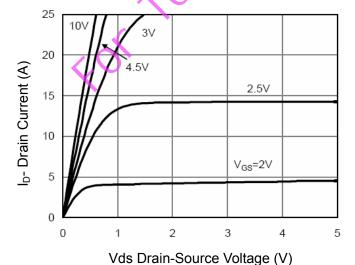


Figure 5 Output Characteristics

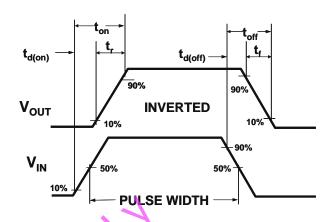
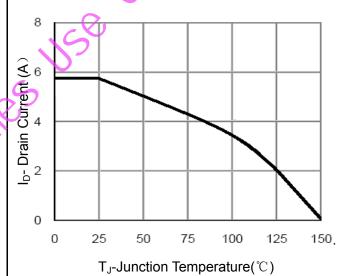
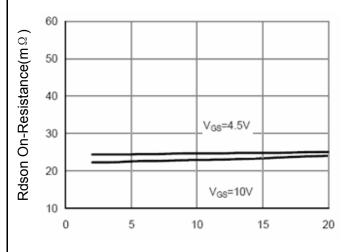




Figure 2:Switching Waveforms

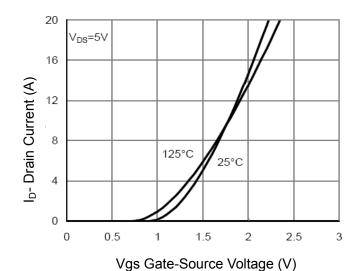
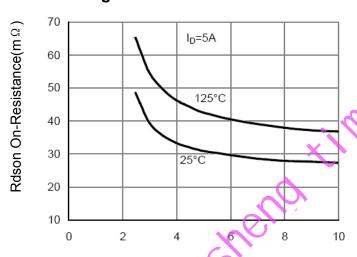


Figure 4 Drain Current



I_D- Drain Current (A) Figure 6 Drain-Source On-Resistance

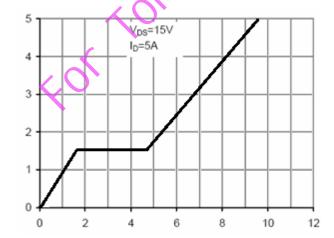


Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)
Figure 9 Rdson vs Vgs

Vgs Gate-Source Voltage (V)

Figure 11 Gate Charge

Qg Gate Charge (nC)

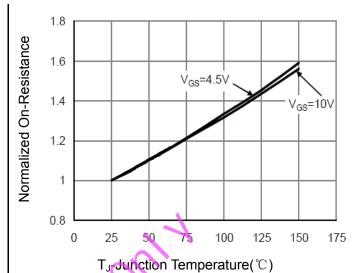


Figure 8 Drain-Source On-Resistance

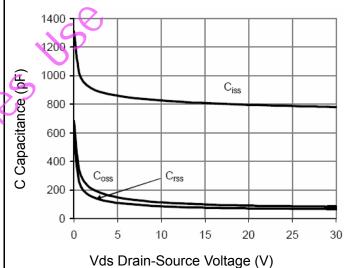


Figure 10 Capacitance vs Vds

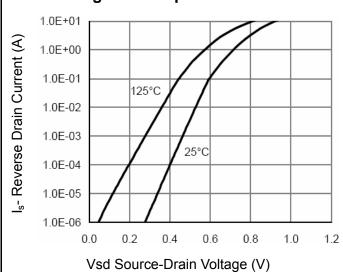


Figure 12 Source- Drain Diode Forward

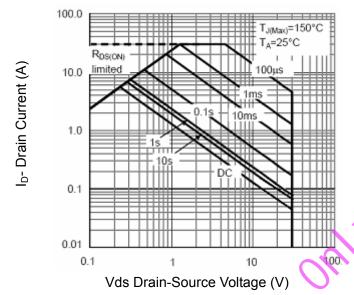


Figure 13 Safe Operation Area

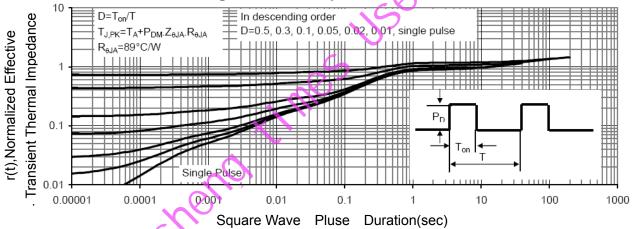
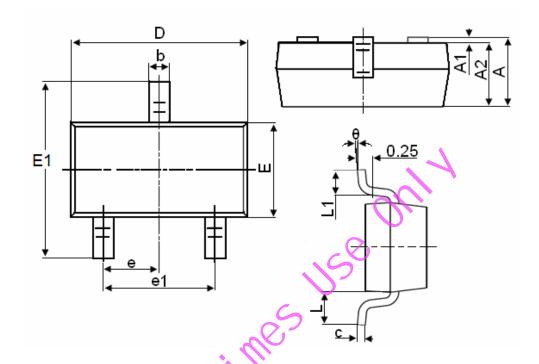



Figure 14 Normalized Maximum Transient Thermal Impedance

SOT-23 Package Information

Symbol	Dimensions in Millimeters				
Symbol	MIN.	MAX.			
А	0.900	1.150			
A1	0.000	0.100			
A2	0.900	1.050			
b	0.300	0.500			
С	0.080	0.150			
D	2.800	3.000			
E	1.200	1.400			
E	2.250	2.550			
е	0.950TYP				
e1	1.800	2.000			
L	0.550REF				
L1	0.300	0.500			
θ	0°	8°			

Notes

- 1. All dimensions are in millimeters.
- 2. Tolerance ±0.10mm (4 mil) unless otherwise specified
- 3. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 5 mils.
- 4. Dimension L is measured in gauge plane.
- 5. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

of Louis

Attention:

- Any and all NCE power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE power representative nearest you before using any NCE power products described or contained herein in such applications.
- NCE power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE power products described or contained herein.
- Specifications of any and all NCE power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- NCE power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all NCE power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE power product that you intend to use.
- This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.